SULTONE FORMATION IN THE SULPHONATION OF 9-<u>tert</u>-BUTYLANTHRACENE; AN UNUSUAL REARRANGEMENT OF THE SULTONE INVOLVING THE <u>tert</u>-BUTYL GROUP.¹

Freek van de Griendt and Hans Cerfontain* Laboratory for Organic Chemistry, University of Amsterdam, Nieuwe Achtergracht 129, 1018 WS Amsterdam, The Netherlands.

Recently we studied the aprotic sulphonation of a number of 9-alkylanthracenes which contained at least one α -hydrogen in the alkyl group.² We now report on 9-<u>tert</u>-butylanthracene (<u>1</u>) which behaves completely differently.

Compound <u>1</u> was prepared by dehydration of $9-\underline{tert}$ -butyl-9-hydroxy-9,10-dihydroanthracene (obtained from anthrone and \underline{tert} -butylbromide) with P_2O_5 (0.75 equiv., reaction time 5 min).³ The sulphonation of <u>1</u> was carried out with 1 equiv. of the SO₃-dioxan complex in dioxan as solvent at 17° .^{2,4} During the reaction a white precipitate was formed, which was filtered off, washed with dioxan and dried in vacuo at 35° . The compound was assigned to have structure <u>2</u> on the basis of the following evidence. I.r. (KBr, cm⁻¹): 1340 (s) and 1145 (s).⁵ ¹H n.m.r. (DMSO-d₆; $\delta_{\rm H}$, ppm) 7.7-7.2 (m, 8H, aromatic H), 5.99 (s, 1H, S-C-<u>H</u>), ⁶ 1.73 (s, 3H, CH₃) and 1.17 (s, 6H, 2x CH₃). ¹³C n.m.r. (DMSO-d₆; $\delta_{\rm C}$, ppm) 141.2, 133.5, 128.6, 128.5, 127.5, 126.3, 100.0, 67.4, 60.3, 24.9 and 19.6; off resonance for the aliphatic region: two singlets at 100.0 (C9) and 60.3 (C11), a doublet at 67.4 (C10), and two quartets at 24.9 and 19.6 (C12, C13, C14). Found: C 68.8; H 5.7; O 15.3; S 10.3. Calculated for C₁₈H₁₈O₃S: C 68.8; H 5.8; O 15.3; S 10.2.

Compound $\frac{2}{2}$ in DMSO-d₆ at 30[°] rearranged slowly (see Scheme 1). At 90[°] the conversion was complete in less than 30 min. The new product was assigned to be 3: I.r. (KBr, cm^{-1}): 1180 (s), 1025 (s), and 750 (m). ⁷ ¹H n.m.r. (DMSO-d₆, $\delta_{\rm H}$, ppm) 7.85-7.65 (m, 2H, aromatic H), 7.25-7.00 (m, 6H, aromatic H), 5.31 (s, 1H, vinylic H), 5.11 (s, 1H, S-C-H), 5.05 (s, 1H, vinylic H), 1.47 (s, 3H, CH₃) and 1,31 (s, 3H, CH₃). ¹³C n.m.r. (DMSO-d₆, δ_{c} , ppm) 151.4, 141.1, 131.3, 129.0, 126.7, 126.0, 124.4, 110.4, 63.6, 48.4, 36.0 and 21.6; off resonance for the non-aromatic carbons, two singlets at 151.4 (C11) and 48.4 (C9) with a small longerange coupling with the hydrogens at C14 and C13 respectively, a doublet at 63.6 (C10), a triplet at 110.4 (C12) and two quartets at 36.0 and 21.6 (C14 and C13). Steric assignments were made on the basis of measurement of the nuclear Overhauser enhancement (NOE), 8,9 presuming that 3 has a non-planar boat structure similar to that of 9,10-dialky1-9,10-dihydroanthracenes.¹⁰ Irradiation of the singlet at $\delta_{\rm H}$ =5.11 ppm (H10) gives a NOE (7%) on each of the peri-hydrogens (7.85-7.65, H4 and H5). Irradiation of the methyl singlet at δ_{n} =1.31 ppm gives a NOE (23%) on each of the other two α -hydrogens H1 and H8, the absorption of which is present in the multiplet at 7.25-7.00 ppm. No NOE could be observed on irradiation of the singlet at δ_{μ} =1.47 ppm for any α -hydrogen. With the aid of double resonance it could be illustrated by the disappearance of the allylic coupling that the signal at $\delta_{_{\rm H}}$ =1.47 ppm is due to the hydrogens at C13. So the signal at δ_{μ} =1.31 ppm is due to the hydrogens at C14. In view of these data we may conclude that the sulphonic acid and the 2-propenyl group are occupying the pseudo-axial positions. The rather small NOE (7%) on the α-aryl hydrogens upon irradiation of the H10 hydrogen may imply some "flattening" of the boat conformation. 11

The unusual rearrangement of $\frac{2}{2}$ into $\frac{3}{2}$ may be explained in terms of the mechanism depicted in Scheme 2. The ¹H and ¹³C n.m.r. data of $\frac{2}{2}$ both show that (only) two methyls of the <u>tert</u>butyl group are magnetically equivalent. This implies that the rotation around the C9-CMe₃ bond is restricted. From a study of molecular models it appears that the most likely conformation of $\frac{2}{2}$ is as shown in Scheme 2.¹² The heterolytic bond cleavage of the sultone $\frac{2}{2}$ leads to the 1,6-dipolar intermediate $\frac{4}{2}$ with the positive charge on C9 (step 1). A 1,2-methyl shift of $\frac{4}{2}$ yields $\frac{5}{2}$ (step 2) which undergoes a proton shift from one of the two equivalent methyls to the sulphonate group to yield $\frac{3}{2}$ (step 3). Step 2 is similar to that proposed for the conversion of one <u>tert</u>-butyl group into methyl in the nitration of 2,4,6tri-<u>tert</u>-butylnitrobenzene.¹³ In the present study no such products resulting from loss of the Me₂C fragment are observed.¹⁴ The proton shift (step 3) may be intramolecular in view of the geometric orientation of the two equivalent methyls and the sulphonate group of $\frac{5}{2}$. <u>Scheme 2</u>

References and notes.

- Aromatic sulphonation part 69. Preceding paper: K. Lammertsma and H. Cerfontain, J.Chem. Soc. Perkin II, submitted for publication.
- 2. F. van de Griendt and H. Cerfontain, to be published.
- The reported dehydration conditions are 2 equiv. of P₂O₅ and a reaction time of 2 hours;
 R.C. Parish and L.M. Stock, J. Amer. Chem. Soc., 1966, 31, 4265.
- H. Cerfontain, A. Koeberg-Telder, C. Ris, and C. Schenk, <u>J. Chem. Soc. Perkin II</u>, 1975, 966.
- The values agree with those given for the -SO₂-O- moiety of a sixmembered ring system;
 E.M. Philbin, E.R. Stuart, R.F. Timoney, and T.S. Wheeler, <u>J. Chem. Soc.</u>, 1956, 4414.
- The chemical shift of 5.99 of H10 corresponds with that of 1,4,5,8,9-pentamethyl-9,10epidioxy-9,10-dihydroanthracene at 6.25 ppm; H. Hart, J. Bau-Chien Jiang, and R.K. Gupta, Tetrahedron Letters, 1975, 52, 4639.
- 7. These values correspond with the ranges (cm⁻¹) suggested by Colthup for sulphonic acids and sulphonates: 1260-1150 (s), 1080-1010 (m) and 700-600 (m); N.B. Colthup, <u>J. Opt.</u> <u>Soc. Amer.</u>, 1950, 40, 397.
- P.P. Fu, R.G. Harvey, J.W. Paschal, and P.W. Rabideau, <u>J. Amer. Chem. Soc.</u>, 1975, <u>97</u>, 1145.
- 9. The NOE data were determined on dilute, deoxygenated, samples in DMSO-d₆, as an average of repeated integrations of the signal in question with the external oscillator on and off resonance.
- A.W. Brinkman, M. Gordon, R.G. Harvey, P.W. Rabideau, J.B. Stothers, and A.L. Ternay, Jr., J. Amer. Chem. Soc., 1970, 92, 5912.
- 11. Also observed⁸ in <u>cis-9,10-di-tert-buty1-9,10-dihydroanthracene</u>.
- The same conformation for the tert-butyl group is suggested for 9-tert-butyl-9,10--epidioxy-9,10-dihydroanthracene; R. Lapouyade, J. Desvergne, and H. Bouas-Laurent, Bull. Soc. Chim. France, 1975, 2137.
- 13. P.C. Myhre, M. Beng, K.S. Brown, and B. Östman, J. Amer. Chem. Soc., 1971, 93, 3452.
- 14. In the rearrangement-fragmentation reaction¹³ the <u>tert</u>-butyl group is transformed to a methyl group with loss of acetone.

(Received in UK 19 June 1978; accepted for publication 3 July 1978)